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I. Phys. A: Math. Gen. 26 (1993) L361-L364. Pxinted in the UK 

LE’lTER TO THE EDITOR 

On the algebraic structures connected with the linear Poisson 
brackets of hydrodynamics type 

A A Balinskyt and A I Balinsky 
Institute for Applied Problems of Mechanics and Mathematics, Academy of Sciences of 
the Ukraine, 3a Naukova Str, 290601 Lvov, Ukraine 

Received 5 January 1993 

Abstract. The generalized form of the Kac formula for Venna modules associated with 
linear brackets of hydrodynamics type is proposed. Second cohomology groups of the 
generalized Virasora algebras are ‘calculated. Connection of the central extensions with 
the problem of quantization of hydrodynamics brackets is demonstrated. 

Poisson brackets of hydrodynamics type (PBHT) 

{uf(x), u ’ ( y ) } = g ” u ( x ) ) S ‘ ( x - y ) + u : b ~ ( u ( x ) ) S ( x  - y )  (1) 

(here and below we assumed a summation on repeat indexes) were introduced and 
studied in [ 1,2] to construct a theory of conservative systems of hydrodynamics type 
and to develop a Bogolubov-Whitham method of averaging Hamiltonian field-theoretic 
systems. We refer to the recent expository article [3] and the extensive bibliography 
therein. In [4] Novikov and the first author considered gave a classification of these 
Poisson brackets depending linearly on the fields uj relative to linear change U‘ = Afw? 
Some examples were discussed in [5,6]. 

For the reader’s convenience we recall some construction from 141. The simplest 
local Lie algebras arising from the brackets of hydrodynamics type are especially 
interesting, where, according to [4], in the case when all metrics are linear in U we have 

gV=czu*+g$ 

bi  = const g; = const (2) 
C@ - b@+ bj’ 

k -  I k. 

The linear (homogeneous) part of such PBHT determines some very interesting classes 
of the infinite-dimensional Lie algebras (‘hydrodynamic algebras’): for two vector- 
functionsf(x) and g(x) with N componentsf,, g, we may define the commutator in 
the ‘local translation-invariant first-order Lie algebra’ or the hydrodynamic algebra 

[f; glkb) = bP( fb(x)g , (x )  -gb(x)f,(x)). (3) 

A bracket (1) or Lie algebra (3), linear in the fields, is called symmetric if be = bit. 
Here f ,  are adjoint variables for U’. 
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It is useful to introduce a new algebra B as a mutliplication in N-space M with 
basis e', e', . . . , e N  

e'd = baeh. (4) 

For the functionsf(x)=fp(x)eP and g(x)=gq(x)eq we write (3 )  in the formf'g-g'f 
using multiplication (4)  in the algebra B. The tensor b i  defines, by (3). a local 
translationally invariant Lie algebra of first order if, and only if, the multiplicaton law 
(4 )  defines a finite-dimensional algebra B in which the following indentities hold: 

a, b, C E  B ( a b ) c =  ( u ) b  ( a b ) c -  a(bc)  = (ba)c-  b(ac) .  ( 5 )  

In the symmetric case Zbe=2b$'= Cy this algebra is commutative and associative. 

Remark After introducing an operation [ a ,  b ]  = ab - bo on B it is Lie algebra and as 
was first proved in [7] this is a solvable Lie algebra. If a finite-dimensional algebra B 
( 4 ) ,  (5) is commutative then it is automatically associative, and if it has the right unit 
then it is commutative. The theory of extensions for the algebras B (4), ( 5 )  was 
constructed in [ 4 , 8 ] .  The method of construction of the wide class of such algebras 
was proposed by Gelfand if algebra A is commutative and associative, &differentiation 
of A then multiplication a o b = a ( J b )  satisfied ( 5 ) .  

The formula (1) defines Poisson bracket if, and only if, an algebra ( 4 )  satisfies (5) 
and for the following symmetric bilinear product 

(e', e'),=gi 

we have , 

(ab, c)o=(a, cb)o (6 )  

for all a, b, C E B .  In this case the 'quasifrobenius property' (6) holds true for all 
symmetric belinear products with matrix gg(u)  = C i u x + g j  for any U'. If the algebra 
B is commutative and has the unit then we have the classical Frobenius algebra. 

Poisson bracket (1) is called non-degenerate if the pseudo-Riemannian metric 
g B = c i u k +  go B IS . non-degenerate at,,a 'generic point': 

det(gB):= & " ( U ' ,  U*,. .. , u N ) # O .  

Lie algebra (3 )  and a finite-dimensional algebra B (5) are called non-degenerate if the 
pseudo-Riemannian metric gy = Ciuh is non-degenerate at a 'generic point', where 

these pseudo-Riemannian metrics have a vanishing curvature. 

For the vector-valued functions periodic in x, by passing to an expansion in Fourier 
series, we obtain a basis (Lb) for the algebra (3) with the relations 

bZ+b''- - C!. From the main theorem of [ l ]  we know that in a non-degenerate case 

[Li, . L ~ ] = ( n b ! - m b ~ ) l ~ , + ,  (7) 

which we call the generalized Witt algebra. For this algebra we have the following 
generalization of the Gelfand-Fuks theorem [9] on the central extension of the algebra 
of vector fields on the circle: 

meorem 1. If the algebra ( 4 )  is commutative and has the unit then 

Hz( V )  = B* 
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where V-algebra (7) and H2-second cohomology group of Lie algebra and B* is the 
dual space for the algebra (4). The all central extensions of (7) have the following form 

(8) 
ij h ( n S - - n )  

[LL, LA]'= (n - m ) b f L k + n +  bkZ 12 ~ . + m , o ~  

where 2-central element and I = ( l , )  E E'. 

In the case when B = C (algebra of complex numbers) we have Gelfand-Fuks theorem. 
For the algebra (8) we may consider Verma module V,,, h, I E B*, over this algebra: 

Vt4,, free generate by ]U) over Ci with n > 0, i = 1,. . . , N and 

L"l U) = 0 n < O  

210) = /U). 

LAlu)= k(e')lu) 

An element of the Verma module is singular if it generates the Verma submodule, i.e. 
it is an eigenvector for all ti, and annihilated by all LL, n <O. 

Theorem 2. For the algebra (8) with the unitial B Verma module is reducible if, and 
only if, it has the singular vector. 

When algebra (4) is commutative and has the unit then for (8) from the root decomposi- 
tion of B we have the following analogue of the famous Kac-Feigin-Fuks criteria: 

Theorem 3. Verma module V,,, is reducible if,' and only if, in algebra B (4) exist 
one-dimensional ideal (a )  such that if a2=0  then h ( a ) =  l ( u ) ( a 2 - 1 ) / 2  for some 
r u ~ N + , o r i f  aa=pa withpEC,p#Othen k : = h ( a ) / p ,  C:=I(a)/pssatisfiedto Kac 
condition [lo] for the ordinaly Virasoro algebra. 

Now we consider the problem of quantization of the PBHT (1). Its decision may be 
found by means of the change of variables U = u ( u )  such that in the new variables U 
bracket (1) is constant. After canonical quantizations of the constant bracket we can 
come back to the old variables U. But we run up against the problem of ordering. Thus 
we need the simplest possible change of the variables. The linear change is not suitable. 
Since according to [l] in the case of non-degenerate algebras (3), (4) the metric 
g" = C$uk must have zero curvature, we appeal to changes u(u) ,  which are now 
nonlinear, &,here metric in the new coordinates (U', . . . , U") is constant 

g " ( u ( u ) )  = g;P(Ju'/au-)(Ju'/ava) g;P =constant. 

We consider the purely quadratic changes 
=$@QsvQuP. 

Then for a change (9) to reduce the non-degenerate metric of zero curvature go = C!u* 
(from PBHT) to constant form it is necessary and sufficient that the following conditions 
hold: bf = b{;  F and g i  determine a Frobenius representation of the algebra (4), where 
the Fa, give a representation of the basis e' of the a ebra in the form of linear operator 
in v-space which are selfadjoint in this inner prohct, sd that 

e' + ( F ' ) ;  = g; F$ F'Fi = C$h/2  det(F6,vP # 0). 
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Thus if the algebra B (4) is commutative and non-degenerate (in this case it has the 
unit) by the quadratic changes we obtained constant bracket. After the linear change 
of variables from U to (+)‘ we have 

K+‘(x))‘, (J(r))‘l= ~ W X  -Y). 
Dirac quantization leads to the theory of free fields in ZD quantum field theory, and 
the Fourier components of (+)’ form the following famous algebra ( i  = 1,. . . , N, s E 2): 

[U’($), a’(k)] = k8”s,+,,. 

After choosing the ordering procedure for a‘(s) we obtain for (9) not algebra (7). but 
the algebra (8), and the ordering procedures are in one to one correspondence with 
central extensions of (7). Thus algebra (8) is the quantization of PBHT (1) in the case 
when algebra (4) is symmetric and non-degenerate. 

Remark. It will be very interesting to investigate the algebras (4) and PBHT with another 
type of change of variables U = u ( u )  such that in the new variables U bracket (1) is 
constant. Some examples of such non-commutative algebras (for the Poisson brackets 
of one-dimensional hydrodynamics) were investigated in [4]. 

We are very grateful to Professor S P Novikov for numerous discussion and 
suggestion. 

References 

[I]  Dubmvin B A and Novikov S P 1983 DAN SSSR 270 781-5 
[2] Dubmvin B A and Novikov S P 1984 DAN SSSR 279 2 9 6 7  
[3] Dubravin B A and Novikov S P 1989 Russ. Math. Sum. 44 35 
[41 Balinsky A A and Novikov S P 1985 Sou Math. Dokl. 32 I ,  229-31 
[5] Novikov S P 1982 Us.n Mot. Nauk 37 5,3-49 
[ 6 ]  Gelfand I M and Dorfman I Ya 1979 Funct. And. i Pnlorhen. 13 4, 13-30 
[7] Balinsky A A 1987 FuncL Anal. i Prilorhen. 21 4,62-3 
[8] Zelmanov E I 1987 DAN SSSR 292 6 
[9] Celfand I M and Fuks D B 1968 Funct. A n d  i Prilo:hea 4.92-3 
[IO] Feigin B Land Fuks D B 1982 Funet Anal. i Prilozhen. 16 2, 47-63 


